59 research outputs found

    TransNFCM: Translation-Based Neural Fashion Compatibility Modeling

    Full text link
    Identifying mix-and-match relationships between fashion items is an urgent task in a fashion e-commerce recommender system. It will significantly enhance user experience and satisfaction. However, due to the challenges of inferring the rich yet complicated set of compatibility patterns in a large e-commerce corpus of fashion items, this task is still underexplored. Inspired by the recent advances in multi-relational knowledge representation learning and deep neural networks, this paper proposes a novel Translation-based Neural Fashion Compatibility Modeling (TransNFCM) framework, which jointly optimizes fashion item embeddings and category-specific complementary relations in a unified space via an end-to-end learning manner. TransNFCM places items in a unified embedding space where a category-specific relation (category-comp-category) is modeled as a vector translation operating on the embeddings of compatible items from the corresponding categories. By this way, we not only capture the specific notion of compatibility conditioned on a specific pair of complementary categories, but also preserve the global notion of compatibility. We also design a deep fashion item encoder which exploits the complementary characteristic of visual and textual features to represent the fashion products. To the best of our knowledge, this is the first work that uses category-specific complementary relations to model the category-aware compatibility between items in a translation-based embedding space. Extensive experiments demonstrate the effectiveness of TransNFCM over the state-of-the-arts on two real-world datasets.Comment: Accepted in AAAI 2019 conferenc

    Building Emotional Support Chatbots in the Era of LLMs

    Full text link
    The integration of emotional support into various conversational scenarios presents profound societal benefits, such as social interactions, mental health counseling, and customer service. However, there are unsolved challenges that hinder real-world applications in this field, including limited data availability and the absence of well-accepted model training paradigms. This work endeavors to navigate these challenges by harnessing the capabilities of Large Language Models (LLMs). We introduce an innovative methodology that synthesizes human insights with the computational prowess of LLMs to curate an extensive emotional support dialogue dataset. Our approach is initiated with a meticulously designed set of dialogues spanning diverse scenarios as generative seeds. By utilizing the in-context learning potential of ChatGPT, we recursively generate an ExTensible Emotional Support dialogue dataset, named ExTES. Following this, we deploy advanced tuning techniques on the LLaMA model, examining the impact of diverse training strategies, ultimately yielding an LLM meticulously optimized for emotional support interactions. An exhaustive assessment of the resultant model showcases its proficiency in offering emotional support, marking a pivotal step in the realm of emotional support bots and paving the way for subsequent research and implementations

    Conversation Disentanglement with Bi-Level Contrastive Learning

    Full text link
    Conversation disentanglement aims to group utterances into detached sessions, which is a fundamental task in processing multi-party conversations. Existing methods have two main drawbacks. First, they overemphasize pairwise utterance relations but pay inadequate attention to the utterance-to-context relation modeling. Second, huge amount of human annotated data is required for training, which is expensive to obtain in practice. To address these issues, we propose a general disentangle model based on bi-level contrastive learning. It brings closer utterances in the same session while encourages each utterance to be near its clustered session prototypes in the representation space. Unlike existing approaches, our disentangle model works in both supervised setting with labeled data and unsupervised setting when no such data is available. The proposed method achieves new state-of-the-art performance on both settings across several public datasets

    Prompting and Evaluating Large Language Models for Proactive Dialogues: Clarification, Target-guided, and Non-collaboration

    Full text link
    Conversational systems based on Large Language Models (LLMs), such as ChatGPT, show exceptional proficiency in context understanding and response generation. However, despite their impressive capabilities, they still possess limitations, such as providing randomly-guessed answers to ambiguous queries or failing to refuse users' requests, both of which are considered aspects of a conversational agent's proactivity. This raises the question of whether LLM-based conversational systems are equipped to handle proactive dialogue problems. In this work, we conduct a comprehensive analysis of LLM-based conversational systems, specifically focusing on three aspects of proactive dialogue systems: clarification, target-guided, and non-collaborative dialogues. To trigger the proactivity of LLMs, we propose the Proactive Chain-of-Thought prompting scheme, which augments LLMs with the goal planning capability over descriptive reasoning chains. Empirical findings are discussed to promote future studies on LLM-based proactive dialogue systems.Comment: Work in progres

    Multi-roles affiliation model for general user profiling

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ

    A study of age gaps between online friends

    Get PDF
    corecore